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ENHANCED ASCRIPTION

Martin Frankel, PhD and Julian Baim, PhD, Mediamark Research Inc.

INTRODUCTION AND CONTEXT

Brief History

The terms “imputation” and “ascription” are used by survey researchers to describe the practice of assigning values 10 sample or
census records in instances in which some survey data are missing.

The reality of missing data has been confronted since researchers have attempted to collect and summarize data about groups of
persons. The Book of Numbers, in The Old Testament, describes the taking of a census.' Appropriately, and no doubt, the
individuals charged with the operation of that census had to find ways to cope with missing information

More recently, the US Bureau of the Census was a pioneer in the development of explicit methods for dealing with missing data
in the processing of the US census. Most likely the need for an explicit specification of procedures for working with instances of
missing data arose in the context of the Bureau’s use of punched card tabulation equipment. Indeed the term “Hot Deck™ used to
describe the most widely-used imputation method is clearly linked to the use of punched data cards. A collection of cards,
containing information about individuals within certain “enumeration areas™ or “census districts” was referred to as a “deck” of
cards.

In magazine audience research in the US, the need for explicit procedures for dealing with missing information occurred when the
decision was taken, by Bill Simmons, to make respondent-by-respondent data available to clients so they or their agents could
undertake their own tabulations.

The current MRI product information book (PIB) ascription algorithm has been used since 1982, when the current MRI
syndicated rescarch product was developed. A similar PIB ascription algorithm was used by the Simmons Study of Media and
Markets when the Simmons product included a PIB placed with a respondent during a personal interview.

Current Ascription Practices

As the use of and reliance on survey research continues to grow in the US, the usage of mathematically-rigorous methods of
imputation and ascription continue to increase. Most recenlly, in its May, 1997, publication of “Best Practices for Survey and
Public Opinion Research,” the American Association for Public Opinion Research (AAPOR) recommends: “...ideally, the
“filling in” or imputation for these missing data items (based on rigorous and well validated statistical methods) should be
undertaken to reduce any biases arising from their absence.”[AAPOR, 1997]

At the present time there are a number of well-accepted methods for imputation and ascription of missing data. In the text
Compensating for Missing Survey Data, Professor Graham Kalton [Kalton, 19831 makes use of the following taxonomy for
imputation methods: Deductive, Cold-Deck, Mean-Value, Hot-Deck, Random, Flexible Matching, Distance Function Matching,
and Regression. The application of these methods in Magazine Audience Research may be found in Frankel {Frankel, 1981]. The
mostcommenly used text for the statistical treatment of imputation methods may be found in Statistical Analysis with Missing
Data [Little and Rubin, 1987]

MRI’s Hot Deck Ascription Method

The MR! syndicated media and product usage study is based on a probability sample of all adults living in US households. Data
collection consists of a personal interview (conducted at the respondent’s household, lasting about 1 hour) followed by the
placement and attempied recovery of a self-administered product information booklet (PIB}.

Compensation for respondents who do not cooperate at the personal interview stage of the survey is accomplished by standard
weighting methods for probability sampling. Compensation for respondents who do not complete a PIB is based on a “nearest
neighbor” (extended cell) form of the Hot Deck procedure:

' “The Lord spoke to Moses in the wilderness of Sinai, in the tent of meeting, on the first day of the second month, in
the second year after they had come out of the land of Egypt, saying, ‘Take a census of all the congregation of the
people of Israel’...,” Holy Bible, Revised Standard Version, Oxford University Press, 1962, verses 1-2.
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Assume an explicit and finite set of individuals or cases $={1, 2,...,N}, that define the total sample. For the Hot Deck ascription
process used by MRI (and used, in general, by all Hot Deck methods), the set S of individuals is partitioned into two mutually-
exclusive and exhaustive subsets: Donors, who have completed a PIB, denoted as D={1, 2,..., M} and recipients, who have not
completed a PIB, denoted by R={1, 2,..., N-M}. That is:®

S={DUR} (1.1.1)
and
@ ={DNR} (1.1.2)

Let M, where M < N, denote the number of elements in the donor set D. Then N-M denotes the number of elements in the
recipient set R.

Associated with the i element in the full sample S is a vector of K variables MI»; ={md, ;, md,,.... mdg;}. The set of these
variable vectors defined over the full sample S is denoted MD={MD,;, MD,,..., MDx}. These variables, which for purposes of
exposition, will be referred to as MD-type variables are generally measures of media behavior or demographic characteristics. At
the individual sample element and variable level, mdy; denotes the value of MD variable k = (1, 2, ....K) associated with sample
element (person) i = (1, 2, ...,N}. 1t is important to remember that MD-type variables are present with no missing values® for the
entire sample S.

Associated with the i™ element in the set of donors D is a vector of J variables PC; ={pc,,;, pc2.... P€1i}. The set of these
variable vectors defined over the set of donors D is PC={PC,, PC....., PCy}. These variables, which will be referred to as PC-
type variables, are typically measures of Purchase or Consumption. The variable values associated with the elements of PC are
initially present for only those elements in the set of donors I, and are the values that are to be ascribed to members of the set of
recipients R. At the individual sample element and variable level, pg;; denotes the value of the PC variable j = (1, 2, ...,J}
associated with sample element (person)i= (1, 2, ....M).

Let F() denote a function that provides a distance score for every possible pairing of MD-type variable vectors, one from the
donor set D and one from the recipient set R. Thus, for all pairs of elements, one from the set D) (the donor set) and one from the
set R (the recipient set), the distance function produces a value DIST}; ». In general the lower the value of F(), the more similar
are the two respondents in terms of demographic and other personal interview variable values.

Mathematically, F() is a function such that:

v{(1,i2),ile D,i2e R}, F(MD,,,MD,,) =DIST,_,, (1.3.1)

where DIST;; ;; denotes the value of the distance measure associated with the 2-tuple consisting of the 11" donor (i1=1,2,...M)
and the i2" recipient (i2=1,2,...N-M). Thus, F() is a function that maps a 2-tuple of vector values into a single scalar value.

This distance function is quite general. As currently implemented, the MRI distance function of pairs of vector arguments
comprises of a linear combination of K scalar functions, one for each element-pair within the vector-pair. Let the k™ scalar
function be denoted i, (md;; ., mdppy). Then”,

K
F(MD,,MD,,) = } f, (nd, ,,md,,) =DIST,,, (1.3.2)
k=0

The MRI ascription functien is comprised of four types of scalar functions:

% See Appendix II for brief glossary of mathematical and set symbols.

3 In fact, there may be a very small number of instances (e.g. less than 1/10 of 1 percent) in which these variabies
have missing values, but this rate of missing information is lower, by several orders of magnitude, than situations
described in this paper.

* The sum of scalar functions contains a term (added as the 0™ term in the summation) from an added element of the
vector MDD, that serves as a counter variable related to the number of times the donor is reused. This component is
described as a fourth type of scalar function.
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Scalar function type 1:

This function type maps any values of the scalar 2-tuple into the value 0. Thus:

f (md_.md,_)=0V keK,il,i2el (1.3.3)

kil ?
This function type is used so that the impact on the distance function for a specific common variable is zero. For example, MR]
uses census region in its distance measure, and the actual sampling cluster identification is also available for each respondent.
Since sampling cluster (al the individual cluster level) is NOT used in the distance factor, a function type 1 is applied to this
common variabie.

Scalar function type 2:

Scalar function type 2 maps values of the scatar 2-tuple as follows. If the 2-tuple consists of identical values, the function maps
to zero. If the 2-tuple consists of different values the function maps to infinity. Thus function type 2 is defined as:

fk (mdk.il ? mdk.iz) =0V mdk.i] =md
f (md, ,md, )=V md 6 #md, (1.3.4)

k,i2

This type of function is applied to variables such as gender. This prohibits a male respondent from serving as a donor for a
female, or visa versa.

Scalar function type 3:

In addition to the foregoing, relatively-simple component types, a third scalar function type results in 2 more complex mapping
of common variable values and contribution to overall distance score.. For these variables the distance function generally
involves a collapsing of categories for specific variables, followed by the use of the absolute difference for these coliapsed
categories, followed by a weight.

For example, in the case of household income the scalar function is based on the following process: MRI collects information
about household income using a show card with 16 alternative income ranges. The initial 16 respondent choices are collapsed
into 5 categories. The associated, recoded variable values (scores) are shown below:

Table 1 - Respondent Choices, Collapsed Categories and Recoded
Values for Total Household Income Variable

Respondent Choices o Variable C_'c_tt_e_go_ri_e_s ) Recoded Values
Under $5.000 oy 1
$5,000-$7,500 } Under $10,000 1
$7,500-$9,999 ' } . 1
$10,000-$14,999 ST ) 2.
$15,000-$19,999 B } $10,000-$18,999 2:
$20,000-$24,999 } R 3
$25,000-$29,999  1$20,000-$34,999 3
£30.000.634 999 s | oy
$35,000-$39,999 ) : 4
$40,000-$49,999 ' }$35,000-$49,999 1 4
$50.000.659.999 y .
$60,000-$74,999 } 5
$75,000-$99,999 } $50,000 and Over 5
$100,000-$149,999 } R 5

Using these recoded values, the scalar function for income multiplies the absolute difference between the recoded values by a
factor of 25.
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More precisely, let g(} denote the function that maps the response choices (column 1 of Table 1) to the recode values (column 3
of Table 3), Then if k is the index of the common variable, such that md; is the household original response category code for
income for the i sample element, the scalar function associated with household income is:

f (md, ,md,,)=25lg(md,)-gimd,)I (1.3.5)

kil ?

Suppose, for instance, the reported household income category for respondent i is $15,000-819,999 and the reported household
income category for respondent j is $75,000-599.999. The collapsed variable scores for these respondents are 2 and 5,
respectively. The absolute difference of these scores is 3 = [2-51 = I-3|. The contribution of household income to the total distance
score for these two respondents is 75 = 25 * 3.

Scalar function type 4:

The fourth type of scalar function is simply a counter that begins at zero and is increased by 1 each time a particular donor i 13
used. This is accomplished by adding a zero order ¢lement to the vector MD;, for each element in the sample. Thus for the i
element in the sample we have mdgy;. The value of mdp; is initially set to zero. Each time a donor is used the corresponding value
of mdg; is increased by a pre-specified value. The first two increments are 1, the third is infinity. This increase is applied to
donor elements only as they are used. Thus we have:

f() (mdo,n ’ mdo‘iz) = {091927 oo}, (1.3.6)

Steps in the Ascription Process

The first step in the ascription process randomizes the order within the set of donors D and, separately. within the set of recipients
R. This randomized order is based upon sequential numbers assigned at the time of questionnaire check-in from the field.

Next, starting with the first randomized recipient in R and continuing with subsequent recipients, the distance measure DIST is
computed for all donors. The donor with the smallest distance measure DIST, is used to ascribe values (the donor’s entire PIB
record) for that recipient. If there is more than one donor with the same smallest distance measure, one of these donors is
randomly selected. After a donor is used, the appropriate increment is added to a variable which is used in the distance function.
As a result, after the first use of the donor the distance function receives an increase of 1. Afier the second use the distance is
further increased by one. After the third use, the function receives an infinitely large increase. This effectively prevents the
donor from being used more than three times.

Mathematically this process is described as follows.
1. Randomize the order of elements in sets D and R.
2. For the first randomized element in set R, find the element j* in set D, such that the distance between the first element in

R and element j’ is minimum. If j* is not unique, select j° at random from the set of elements in D with minimum
distance. Thus we have

DIST,, <{(DIST,,Wje D}  (1.3.7)

Once donor j' is identified, assign the values of the vector PC; to element 1 in set R.

3. Repeat Step 2 with successive recipients (as determined by the randomized order). subject to modifications in the
distance function associated with re-use and maximum use. As a result, for the i®  (randomized) element in the
recipient set we have:

DIST,, <{(DIST, Vje D'} (1.3.8)

where D’ is used to indicate that the distance function effectively limits the set of possible donor elements to those who
have served as donors fewer than three times.
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STRENGTHS AND WEAKNESSES OF THE CURRENT METHOD

Positive Features (Strengths) of the Method

As has already been discussed, the current MRI ascription method has been in use since 1982. There are a number of positive
features of the current methed:

1. It provides a procedure for compensating for missing data in a way that is uniform across all reports and for all users.

2. It does not require complex software to produce estimates with this uniform compensation. Estimates that compensate
for “missing” information are automatically “built in" to all two-way, or multi way estimates that are output from
standard cross-tabulation programs. The algorithm for these tabulations is standard and simple, because it requires only
“counting” of weighted (either household or person level) responses. The same “built-in” compensation for missing
information is automatically included in standard algorithms for the computation of means or medians, based on the
person or household weight for each respondent.

3 The algorithm is consistent with those used by most producers of “high quality™ public-use files; for example, the US
Bureau of the Census, the National Center for Health Statistics (NCHS), the National Center for Educational Statistics
(NCES).

4. The use of a Hot Deck ascription system avoids the possible misuse of the survey that could result in two different

population estimates being made from the same survey.

5. MRI’s ascription system fully preserves the vast majority (90% or more) of the dependencies (relationships) between
common variables and donor variables with respect to the total (ascribed and non-ascribed) sample. This general
conclusion is supported by a recent Magazine Publishers of America (MPA) report [Swallen, 1997]and is supported by
MRI internal analyses.

6. The process preserves interrelationships among donor variables within respondent.

Weaknesses of the Method

The two major weaknesses of the method are as follows:
1 The use and acceptance of the method requires a certain level of education for some users.

Depending upon the survey research experience of some data users, the fact that “ascription” has been used may be
viewed as a “problem” in the use of the data base and its estimates. Some users do not understand that no survey
attains a 100% response rate for all questions, and must be taught that an explicit ascription process represents an
appropriate method for working with missing responses.

2 The second weakness of the method is that the relationships among common variables (magazine, other media, and
demographic) and donor variables (typically, product purchase and consumption) variables may become subject to
attenuation. This may happen, for example, when users examine product usage/purchase levels by magazine readership
or demographic composition by product usage/purchase.

In its examnination of magazine audience profiles for product groups the MPA Syndicated Research Task Force [Swallen, 1997]
concluded:

“While ascription of PIB responses does produce changes in magazine audience profiles for product targets, it has negligible
impact on magazine selection decisions. Magazine rankings—whether based on composition, coverage or CPM measures—are
very similar whether using Pure PIB (pre-ascription) or Total (post-ascription) respondent data.”

In its examination of Demographic Profile Analysis the Task Force report noted that:

“A data user seeking to identify key demographic characteristics of a product user target will come to the same conclusions
whether looking at Total or Pure P1B (donor only weighted) data. Ascription in some citcumstances, dilutes the magnitude of
demographic skews and may narrow the differences between individual demo cells. But it does not seem to seriously distort
directional skews and/or differences.”

Internal MRI research indicates that statistically significant attenuation occurs in only a relatively small percentage of cases. This

attenuation phenomenon has been recognized for some time, but, it was not until recently that the availability of economical,
high-speed computing power enabled a computer-intensive improvement of the basic Hot Deck ascription process.
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THEORETICAL DEVELOPMENT OF ENHANCED ASCRIPTION

Factors Leading to Development

The development of enhanced ascription has been a result of MRI's examination of possible solutions for a weakness of the
current ascription procedure (I1.2.2 above). The availability of inexpensive, extremely-fast processing and increased storage
capacity allows computer-intensive approaches which were only theoretically possible a decade ago.

The use of computer-intensive methods allowed us to determine:

{1} In most instances the current MRI ascription process produced results with only negligible attenuation effects. The
differences are generally less than would be expected due to random sampling variance.

(2) Attenuation near or greater than random sampling error levels occurred in a small proportion of cases.

We concluded that the appropriate and prudent strategy for improvement of the current ascription process should attempt to retain
the current procedure and also focus on the elimination or mitigation of non-random attenuation on a variable-by-variable basis.

We have been successful in developing a system consistent with that strategy. Our approach to enhanced ascription first applies
the basic ascription algorithm, then identifies instances of attenuation, and finally deals with those instances.

Description of the MRI Enhanced Ascription Algorithm

1. The first step in the enhanced ascription process is to establish a measure by which the results of ascription are
evaluated. A standard weight is developed for PIB-complete respondents (donors). This weight is necessary because
the weight devetoped for the full sample compensates only for differential non-response factors for the initial stage of
interviewing. This PIB-complete standard weight also compensates for non-response factors which arise in
conjunction with the PIB capture process. Thus, the PIB-complete weight is analogous to the weighting algorithm
applied to the full sample S, but also makes use of other variables for which projections are developed from the full
sample weight. These additional variables (which must be present for all respondents) include derived general media
usage levels (e.g., above or below median) or specific net, gross, or individual audience levels for single media vehicles
or for media combinations.

This step is described as follows:

Let FSW denote the vector of full sample weights, one for each element of the sample S. Then,

FSW = {FSW,,..FSW_}
(VieS, FSW >0} am.2.1)

The FSW weight, is created in the standard course of processing the MRI study.

Let PIBWT denote the PIB-complete standard weight defined for each element in the donor portion D of the sample.
This weight will generate the measure by which comparisons between the data set consisting of all persons with
completed product information bocks will be compared to the full sample (using FSW) after the ascription process has
been applied. The weight PIBWT is defined as zero for all elements not in the donor portion of the sample. Thus,
PIBWT is a vector of PIBWT weights, one for each element of sample S. For ¢lements in the donor set (PIB
completes) the PIBWT weight will be non-zero. For all elements in the recipient set (PIB non-completes) the PIBWT
weight is zero.

PIBWT = {PIBWT,,.. PIBWT, }
{Vie D, PIBWT >0}
{VieR, PIBWT =0} (I11.2.2)

The PIBWT weight is based on marginal and ceil level control totals used in the development of the FSW weight as
well as on marginal and cell-level control totals derived from the full “weighted” sample.
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For both the FSW weight and the PIBWT weight we have the following definitions of POP(FSW) and FPOP(PIBWT).

POP(FSW) = ZN: FSW, (I11.2.1a)
and

N
POP(PIBWT) =Y PIBWT, (111.2.2a)

i=l

2. The second step applies the basic MRI ascription algorithm: to all respondents in the recipient set R. This results in the
association of a vector of PC variable values with each element in the recipient set R. After this process, each element
in the full sample has a vector of MD-variables as the result of data collection and a vector of PC-variables derived
either from data collection {(donor set D) or from ascription (recipient set R}.
Once the basic MRI ascription process has been applied it is possible to form two weighted estimates, one based on the
full sample using standard ascription and the other based on the PIB-complele sample.

3. In the third step, sample estimates based on the output of the standard MRI ascription using the full sample weight
FSW and sample estimates based on the PIB complete standard weight are compared.
The exact description of this step requires the following definitions:
Let A; = {1, 2j2...25n], denote a vector of values for the variable “a;", one for each element in l.he sample S, such

that at the individual sample respondent (element) level, a;; denotes the value of variable aj; for the i i sample element.
For expositional simplicity we will assume that each a;; may only take the values zero or one. That is

A‘ :{ajvl,a

]

a . }3Vie{l,..N},a,=0va, =1} (L.2.3a)

iz

The function FSW(A;), applies the full sample weight, FSW, to each respondent and results in the weighted sum of
variable a;, That is:

FSW(A) =D, FSW *a (111.2.3b)

i=l

In a more general context, the FSW function may be also defined as a conditional function as follows:

Let Aj = {a;, &2,.... a;n} as before and By = {by4, biz,..., bn} a vector of variable values over the entire sample of N
such that the value of variable “by” is elther Qorl. That is, we define

B, ={b_.b_,,.b . }15Vie{1,.,N},b,=0vb, =1} (I1.2.4)

N
FSW(A,IB,) =Y FSW, *a_*b,, (111.2.5)

Given the definitions of A; and B, we define FSW(A; | B,) as

In this case FSW(A; | B)) is computed by taking the weighted sum of the value of variable a times variable by,
respondent-by-respondent aver the entire sample S.

Alternatively, FSW(A,IB,) may be expressed as the weighted sum of A, restricted to those elements where B, is equal 1

FSW(A,IB,)= 3 FSW, *a (111.2.6)

e[ By =1}
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In those instances in which A; and B, are both zero/one nominal variables (as assumned), the function FSW(A}IBk)
describes the computation of a cell entry of a two-by-two cross-tabulation.

In similar fashion we may define sample estimates based on the PIB complete standard weight, PIBWT. Using the
same notation as above:
N
= *
PIBWT(A,) =) PIBWT *a,, (I11.2.7)

i=l

N
PIBWT(A,IB,) =Y PIBWT *a_ *b,, (I11.2.8)
i=l1

PIBWT(A,IB,)= 3 PIBWT, *a, (111.2.9)

ie{B,, =1}

The enhanced ascription algorithm entails successive (iterative) adjustments of variable values based on the
examination of “composition” or “coverage” differences between estimates based on the full sample (using ascribed
information at the particular stage in the iteration ) using the FSW weight and corresponding estimates based on the
PIB completed respondents using the PIBWT weight. Under our assumption that both A; and B, are zero/one nominal
variables (see I11.2.3a and 111.2.4) we define:

FSW(A, IB,)
FSW(A,)

R(A,,.B,,FSW)= (II1.2.10)

and

PIBWT(A,IB,)
PIBWT(A )

R(A,,B,,PIBWT) = (II1.2.11)

Further we define a function n() that provides “unweighted” sample sizes (bases) for variable a;, (where a; is a zerofone
variable and the sample size is the unweighted count of persons with value one) among various subsets of the sample.
Let T denote a set or subset of elements (T may either be the full sample 5, the set of donors D, or the set of recipients
R) Then:

n(A, IT)=Ya, (I11.2.12)

ieT

Finally we define DEFF(A|T) as the “design effect” of the sample elements for which the values of variable a; are one,
over the set T. This function recognizes that sample estimates are based not on an unweighted simple random sample,
but rather on a sample that is clustered, stratified and weighted.

The comparison between the full sample (using ascribed values) and the P1B-complete standard weighted sample is
based on a “z-score,” which takes into account both the magnitude of the difference and the sampling error of this
difference.

Define:
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R(Ajagk ’}TS___W) - R(A}aBk sPIBWT)
SE[R(A,B,,FSW)—-R(A,,B,,PIBWT))

Z(A,,B,)= (I11.2.13)

where,

SE[R(A;,B,,FSW) —-R(A;,B,,PIBWT)]

- 172

R(A;,B,,FSW)*(1-R(A,,B,,FSW)
n(A, IR)/ DEFF(A, IR)

= (111.2.14)

R(A,,B,,PIBWT)*(1—R(A,,B,,PIBWT)

n(A, | DYDEFF(A, | D)

— -

Let M denote a subset of MD variables of order U and let P denote a subset of PC variables of order V. In most
instances, M-type variables will be individual magazine readership indicator (0,1) variables and P-type variables will be
indicator (0,1) variables associated with individual product usage or activity participation.

Thus,

M = {Ml!_M_zv--sMU} and

B:{EMEZ'}""EV} (III.2.15)
Further, we define a matrix of order UxV with u,v™® element defined by (111.2.12) above. That is,

zIM,P]={ZM.,P,)V[u={1,..U},v={1,..V}] (I11.2.16)

The enhanced ascription algorithm is described as follows:
PROSE STATEMENT:
3A. Find the maximum z-score within the full matrix of z-scores and the specific P-variable associated with that
z-score. If the maximum z-score is less than threshold constant C;, terminate the process. If the maximum z-

score is greater than or equal to C|, continue to step 3B,

3B. For the P-variable identified in step 3A, find the M-variable with highest z-score.® If the z score is less than a
second threshold C,<C), go to step 3A, otherwise continue to step 3C.

* In certain situations, where product purchasefusage or activity participation variable are highly correlated,
“composite” variable sets are created. For example, if 3 indicator purchase, or usage, or activity variables are
correlated to the extent that their “loading” on a single “‘component™ of a rotated principal component dimension is in
excess of .85, then the 3 variables will be grouped. One of the variables, typically the variable with the highest
loading, will be used for the various Z computations, but when the specific “donor” is selected, the entire set of
variables associated with the donor will be used as a group.

® The first time through this M variable will have been located in step 3A, but in general, it will be necessary to
identify the maximum z based on “current”” ascribed values.
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Apply the algerithm described in Appendix I, to the set of recipients R, with respect to the specific P-variable.
Recompute all z-scores associated with the P-variable. Return to step 3B and repeat.

MATHEMATICAL STATEMENT:

STEP 3A1l:

STEP 3B1:

STEP 3A2:

STEP 3B2:

STEP 3C1:

STEP 3C2

Determine (u',v') 3

ZM, ,P)2{ZM,,P )} V [u={l..U},v={1,..V}].
Determine (u'”,v') 3

(IL.2.17)
ZM, ,P.)>{ZM,,P)} V [u=(L...U},v=v1].

If (Z(M,,P.,)<C,,STOP, (I1.2.19)

If (ZM,,P.) =C.,GOTOSTEP 3B1. (I11.2.18)
If (ZM,.,P,)<Cq, GO TOSTEP 3A1,

If (Z(M,.,P,)2C,, GO TOSTEP3C1. (I11.2.20)

M,.P, <M, P < AIAM,..P, ,FSW,PIBWT,H),
where ATA()is a function defined in Appendix I
and H is a vector of rank U. (I11.2.21)

GO TO3Al (111.2.22)

AN EXAMPLE OF ENHANCED ASCRIPTION

In Tables 2-4 we show the results of the application of enhanced ascription in the case of two Golf specialty magazines labeled
G1 and G2 and § activities related to goif. In this example they are include: Al: Own Golf Clubs, A2: Golf Balls Purchased, A3:
Watch Golf on TV, A4: Play Golf and A5: Autend Golf Events. Table 2 shows the incidence levels of the 5 activities based on
the full sample after the standard ascription.

TABLE 2: STANDARD MRI ASCRIPTION FULL SAMPLE
Incidence Levels of Golf Related Activities for Two Golf
Publications
Golf Related Publication Publication

Activity G1 G2
Al 47 1 42.7
A2 49.4 46.9
A3 49.2 52.3
Ad 43.6 41.2
AS 215 21.0
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Table 3 shows the same incidence levels based on the PIB returned sample.

TABLE 3: PIB RETURNS WITH PIB WEIGHT

Incidenbe Levels of Golf Related Act"i\'r'ifiéé'fdr Two Golf |

Publications

Golf Related Publication
Activity Gt
A1 64.3
A2 68.1
A3 74.3
Ad 59.6
AS 32.4

Publication
G2

52.5
58.1
65.2
52.3
271

Finally, Table 4 shows the incidence levels after enhanced ascription

Publication
G2

54.2
58.7
63.4
54.6
26.6

TABLE 4: ENHANCED ASCRIPTION FULL SAMPLE
Incidence Levels of Golf Related Activities for Two Golf
Publications
Golf Related Publication

Activity G1
Al 64.9
A2 68.0
A3 69.9
A4 62.3
A5 32.3

Session 4.3

As these tables show the Enhanced Ascription process has resulted in full sample incidences more consistent with the PIB

returned sample.
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APPENDIX 1

The function AIA(M,-, P, FSW, PIBWT, H ) produces madified values in the vector P,-. It does not modify any values M.,
FSW or PIBWT. This is shown, by the notation,

where P,.”" indicates that the output of the function in terms of P, may be different from the original input P, but that these
modified values are substituted for P.

M_,P, « M_ P’ « AIA(M,,P,FSW,PIBWT,H)

In order to describe the process by which AIA() modifies values of P it is necessary to recognize the following results:

THEOREM 1:

Let A; and B, denote vectors of rank N, where each element of the vector is either zero or one. Further let WT denote a vector of
rank N, where each element of the vector is greater than or equal Lo zero.

A, ={a,,a,,a,)3Vie{l,..N}a, =0va,=1 (AL1)

—]

B, ={b,,,b,,.....b,}3Vie {1,.,N},b,,=0vb,, =1 (AL2)
WT, ={wt,,wt,,...,wt }3Vie{l,..N}wt, 20 (AL3)

Finally define WT(A; | By) as

N
WT(A,IB,) =) WT *a, *b,, (AL4)
i=l

Then WT(A; | By) = WT(B, | Aj).

Proof:

The proof follows from the definition A1.4, interchanging the order of a;; and by;. That is we first specify the definitions of
WT(A; | By) and WT(B, | Aj). We note that the i"™ term in the definition of WT(A; | B,) is WT; * a;; * b ; and the i term in the
definition of WT(By | A;) is WT, * by; * a;;. Since for each of the N terms in the summation, WT; * a;; * by, = WT, * by ; * a5, it
follows that the summations are equal. Q.E.D.

Corollary: FSW(A; | B,) = FSW(B, | A;). Follows by definition.

Corollary: PIBWT(A; | By) = PIBWT(B, | A;). Foliows by definition.

In the following description, reference is made to the various entries in a cross-tabulation of the two possible values: {0,1} of
variable A; by the two possible values: {0,1] of variable B,. Thus, consider the two by two table that results when we fully cross-

tabulate Magazine A; (non-readers, readers) by product B, (non-users, users).

The letters X,Y.,Z.U denote entries in the table (which are weighted sample sums (i.e. population projections})

Do Not Read “A;” Read A" Total Persons
Do not use “B,” X Y X+Y
Use “B,” Z U Z+U
Total X+Z Y+U X+Y+Z+U
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If we consider a table of variable A; by variable B, using the full sample weight FSW, we have

X+Y+Z2+U = POP(FSW), the sum of full sample weights over the sample
8) = FSW{A; | B,) = FSW(B, | A)).

Y+U =FSW(A))

Z+U =FSW(B,)

All other table entries follow from the above

X+Z = POP(ESW) - FSW(A))

X+Y = POP(ESW) - FSW(B,)

Y = FSW(A) - FSW(A; | B,) = FSW(A;)- FSW(B | A)

Z = FSW(B,)- FSW(A; | B,) = FSW(B,)- FSW(B, | A;}

X = X+Y - Y, as determined in prior steps.

For Aj and By, let XTAB(A,, By, PIBWT) denote the 2 x 2 cross-tabulation A; and By, of based on PIBWT as defined above.
For A; and By, iet TARG(A;, By, PIBWT, FSW) denote a 2 x 2 set of “targe(” values derived as follows:
X+Y+Z+U = POP(FSW), the sum of full sample weights over the sample

U =FSW(A; | By) =FSW(B, | A;).

Y+U =FSW(A))

Z+U = PIBWT(B,)

It should be noted that values in TARG{(A,, By, PIBWT, FSW) differ by those that would occur in XTAB(A;, By, PIBWT).

In the process that follows, the individual {0,1} values associated with the vector
A are never changed. We will refer to the cross-tabulation XTAB(A, B,, PIBWT) as “C” and structure TARG(A, By, PIBWT,
FSW) as “T".

First, consider al! sample elements where a,;=1. If the U cell in T is greater than the corresponding cell in C, select a sample of
elements where a;;=1 and by =0 and change the values of by; from @ i 1. The sampling fraction is determined such that the
difference is made as small as possible. If the U cell in T is less than the corresponding cell in C, , select a sample of elerments
where 2;;=1 and by ;=1 and change the values of by; from | to 0, with sampling rate determined as described above.

Repeat the process for all sample elements where a;;=1, substituting Z for U above.

There are a number of different special procedures that may be applied within this general process. One of these special
procedures focuses on the possible elements that may be selected for inversion: O to | or 1 to 0. One possible option in this
process is (o impose no constraints on the choice of elements for inversion. An alternative option is to restrict the subset of
elements that may be selected for inversion within a given By to certain subsets of elements based on their values for A;'s that
were previously subjected to the algorithm.

Anocther possible special procedure involves the collapsing of several A; variables into a mutually exclusive and mutually
exhaustive set of combinations.
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APPENDIX II

The following mathematical symbols are used in the text:

Logical and Set Symbols:

V =for All

3> = such that

v ="or" (logical conditions)
A ="and" (logical conditions)
= "or" union of sets

M ="and" conjunction of sets
€ =is an element of set

> =summation
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